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ABSTRACT

Opportunistic scheduling is a key mechanism for improving
the performance of wireless systems. However, this mech-
anism requires that transmitters are aware of channel con-
ditions (or CSI, Channel State Information) to the various
possible receivers. CSI is not automatically available at the
transmitters, rather it has to be acquired. Acquiring CSI
consumes resources, and only the remaining resources can
be used for actual data transmissions. We explore the result-
ing trade-off between acquiring CSI and exploiting channel
diversity to the various receivers. Specifically, we consider
a system consisting of a transmitter and a fixed number of
receivers/users. An infinite buffer is associated to each re-
ceiver, and packets arrive in this buffer according to some
stochastic process with fixed intensity. We study the im-
pact of limited channel information on the stability of the
system. We characterize its stability region, and show that
an adaptive queue length-based policy can achieve stabil-
ity whenever doing so is possible. We formulate a Markov
Decision Process problem to characterize this queue length-
based policy. In certain specific and yet relevant cases, we
explicitly compute the optimal policy. In general case, we
provide a scheduling policy that achieves a fixed fraction of
the system’s stability region. Scheduling with limited infor-
mation is a problem that naturally arises in cognitive radio
systems, and our results can be used in these systems.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless com-
munication

General Terms
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1. INTRODUCTION
Wireless systems have limited resources, and they must be

exploited optimally. Recently, opportunistic scheduling has
emerged as an attractive solution for improving the efficiency
of these systems. The basic principle behind opportunistic
scheduling is to exploit the independent variations of fad-
ing experienced by different interfering links/users [16, 3].
The throughput improvement is achieved by always schedul-
ing users with relatively favorable radio conditions. When
the number of users grows large, the throughput gain may
become significant since each time a scheduling decision is
made, there is, with high probability, a user with better ra-
dio conditions than average.

The design and the performance of opportunistic schedul-
ing policies have been extensively explored under various
network and traffic scenarios. In their seminal papers [25,
24], Tassiulas et al. have proposed the opportunistic max-
weight scheduling strategy and have shown that it could en-
sure stability of the user buffers (i.e., the expected backlog is
finite) whenever this is at all possible. This schemes has been
generalized to adapt to various network scenarios, see e.g.
[26]. Opportunistic scheduling strategies providing delay
guarantees have also been proposed and analyzed, see e.g.
[2, 23, 21, 18]. Finally, in wireless systems providing data
elastic services, e.g. CDMA 1EvDo [3] and UMTS/HSDPA
[1], opportunistic and fair schedulers have been proposed [3,
13, 5, 17, 27, 22] and have been actually implemented in 3G
cellular systems. There, fairness is formalized through the
notion of user utility.

To achieve the promised substantial performance gains,
the transmitter (an access point or a base station) imple-
menting opportunistic scheduling has to be aware of the
radio conditions or CSI (Channel state Information) of the
various users so as to take the right scheduling decision. The
channel states are by default not known and they have to
be acquired. In 3G cellular systems, users report their CSI
to the base station using dedicated uplink channels (one up-
link channel per user), which can be quite costly in terms
of radio resources (spectrum and power). The amount of
resources used to acquire CSI is proportional to the number
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of users whose channels have to be known, and hence one
has to carefully evaluate the trade-off between these wasted
resources and the performance gain achieved by employing
opportunism. Here, we typically have a problem of charac-
terizing the optimal exploration vs. exploitation trade-off:
acquiring the CSI of many of users (exploration) has a cost,
but at the same time, it allows to increase the transmission
rate (exploitation). The problem of designing joint oppor-
tunistic scheduling and CSI acquisition strategies also nat-
urally arises in cognitive radio networks. For example, con-
sider a cellular network shared by primary and secondary
users. In a given cell or area, secondary users may access
the spectrum only when primary users are not present in the
system. Now since the secondary users may have very spo-
radic access to the spectrum, it makes no sense to maintain
a dedicated channel between each of them and the base sta-
tion. Instead, the base station could acquire the CSI only
when primary users are not present in the system. Again
when this occurs, one has to optimally design joint schedul-
ing and CSI acquisition strategies, i.e., to define from how
many secondary users the channel state should be acquired.

In all the work mentioned above, complete knowledge of
CSI has been assumed and the cost of CSI acquisition has
not considered. Recently, however, due to the practical im-
portance of the issue, a significant amount of research efforts
has been devoted towards designing schemes that optimize
system performance when CSI is not automatically avail-
able, and when it rather has to be acquired (we present the
detailed related work at the end of this section). In this pa-
per, we consider a system consisting of a transmitter and a
fixed number of receivers / users. To each user, an infinite
buffer is associated and it stores packets arriving at a fixed
intensity according to some stochastic process. Our aim is to
design a joint CSI acquisition and scheduling strategy that
stabilizes the buffers whenever this is at all possible.

Our main contributions are as follows:
• First, we characterize the set of arrival rates for which
buffers can be stabilized (stability region). Next, we show
that analogous to the max-weight policies proposed for the
wireless systems with complete CSI information, queue length-
based policies stabilizing the buffers whenever doing so is
possible can be designed for wireless systems where the CSIs
have to be acquire.
• Even though we could identify optimal queue length-based
policies, implementing them turns out to be computation-
ally expensive. Indeed, to compute an optimal policy, we
need to solve generalized versions of optimal stopping time
problems, which is known to be difficult [4]. To circumvent
this difficulty, we first obtain key structural properties of the
optimal policies, allowing us to reduce their computational
complexity. In certain special cases of practical interest, we
propose simple (polynomial time) algorithms to compute op-
timal policies.
• When an optimal policy cannot be obtained in polyno-
mial time, we design computationally efficient approximate
policies that provide a guaranteed fraction of the stability
region.
• We evaluate the performance of the proposed policies using
numerical experiments, and also quantify the cost in terms
of stability due to the lack of CSI.

Related work. Identifying an optimal channel state ac-
quisition and scheduling strategy has been addressed in the
literature only recently [14, 20, 11, 12, 7, 8]. These papers

study the exploration vs. exploitation trade-off in the sat-
urated case, i.e., all users always have packets in their cor-
responding buffers. They characterize strategies that maxi-
mize the throughput in such systems. To our knowledge, the
present work provides the first analysis of the joint CSI ac-
quisition and scheduling problem with system stability as a
performance objective. As we demonstrate later, accounting
for the stochastic queueing behavior of the system greatly
increases the problem complexity, and our results are non-
trivial extensions of those presented in [8].

Most of the papers mentioned above consider that the cost
of channel state acquisition is linear in the number of probed
users and is independent of the transmission rate of the user
finally scheduled. In other words, when, after acquiring the
CSI of p users, a user is scheduled and the corresponding
transmission rate is R, then the reward or throughput is
equal to R − pβ. This cost structure simplifies the problem
as explained in [7, 8], but proves difficult to justify. Here we
consider a more natural cost structure: time is slotted and
acquiring the CSI of one user takes a fraction β of the slot, so
that the throughput (in a slot) is equal to R×(1−pβ). This
cost model is referred to as a logarithmic cost in [8] (since
the log of the throughput is just log(R) + log(1 − pβ)).

It is worth mentioning here that the stability of wireless
systems has been investigated when infrequent channel in-
formation is available, see e.g. [15]. Here, the CSI is avail-
able infrequently but acquiring this information has no cost,
and controlling this acquisition is not considered.

As we will show later on in the paper, designing joint CSI
acquisition and scheduling strategies to ensure system sta-
bility can be formalized as a stochastic control problem [4],
however as already noticed in [11], even for saturated sys-
tems, this problem is different from all the classical control
problems studied in the literature (bandit problems, secre-
tary problems, stopping time problems, see e.g. [19, 28, 9]).

2. SYSTEM MODEL
Consider a broadcast channel with N receivers. Time is

slotted, and the duration of a slot corresponds to the coher-
ence time the channel of the various users. Let Ci(t) denote
a random variable representing the channel gain of user i in
slot t. We assume that {Ci(t)}t≥1 is an i.i.d. sequence, and
that Ci(t) can take a finite number of values. Without loss
of generality, let Ci(t) < cmax < ∞ for all i. Moreover, we
assume that C(t) = [C1(t) · · · CN(t)] is a random vector
with independent components. Clearly, C(t) can take only
finite number of values, say M , i.e., C(t) ∈ {C1, . . . , CM}

for every t. Let F̃i(·) denote the distribution for Ci(t). We
assume that the distributions are known at the transmitter.

Notation: Capital letters will indicate random variables,
while the corresponding small letters will indicate the ob-
served value of the random variable. E.g. Ci(t) is a random
variable, while ci(t) is the observed value of Ci(t). Moreover,
bold letters will indicate vectors.

Let Ai(t) denote the number of bits arriving in the buffer
of receiver i ∈ {1, . . . , N} in slot t. We assume that the
queue for each receiver can potentially store infinite num-
ber of bits, i.e., the arriving bits are not lost due to buffer
overflow. Assume that {Ai(t)}t≥1 be an i.i.d. sequence for
each i, and A(t) = [A1(t) · · · AN(t)] is a random vector
with independent components with Ai(t) < amax < ∞ for
all i. The expected arrival rate for the receiver i is denoted
by ai = E[Ai(t)].
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We assume that the transmitter transmits at the fixed
average power, but it can adapt transmission rate based on
the channel state (CSI) of the receiver to which it transmits.
Unlike previous work, we assume that the CSI for each of the
receivers are not known at the beginning of the slot, rather
the transmitter has to acquire this information. Acquiring
the CSI consumes resources like time, bandwidth and power.
In this paper, we assume that the transmitter can acquire
the CSI of a receiver by probing, which consumes a fraction
β of a slot. Thus, if the transmitter probes k receivers and
then decides to transmit to a probed receiver (say i), then
it can transmit only (1 − kβ)R(ci(t)) bits, where ci(t) is
the observed value of the random variable Ci(t). Since the
transmitter can transmit to a receiver only after knowing
its CSI, probing more receivers provide more options at the
transmitter, but on the other hand, it consumes a larger
fraction of resources and hence leaves a smaller fraction of
resources for actual data transmission.

Let us assume that the transmitter probes k receivers.
The set of probed receivers is denoted by Pk and the vector
of observed CSI values is denoted by cPk . Similarly, the

CSI of the unprobed receivers is denoted by CPk , where
Pk = {1, . . . , N} \ Pk.

Definition 1. A joint probing and transmission strategy
π is an algorithm that, given (Pk, cPk), decides either to
probe a receiver j ∈ Pk or to transmit to a receiver i ∈ Pk.
When π decides to probe the channel of user j, the state
changes to (Pk+1, c

Pk+1), where Pk+1 = Pk ∪ {j}. When π
decides to transmit, it transmits (1 − βk)R(ci) bits.

Let S denote the set of all joint probing and transmission
strategies. Note that the above definition does not prohibit
a strategy π to choose i or j randomly from sets Pk and Pk,
respectively, according to some distributions that may de-
pend on the state (Pk, cPk ). Thus, the class of all the joint
probing and transmission strategies is uncountable. How-
ever, we show that it is sufficient to consider only a finite
number of joint probing and transmission strategies in order
to quantify the stability region.

Definition 2. A deterministic joint probing and trans-
mission strategy is generated by a set of functions
gπ

k : (Pk, cPk) → {1, . . . , N} for every k. Let gπ
k (Pk, cPk) =

i. If i ∈ Pk, then π transmits (1 − kβ)R(ci) bits to user
i. Moreover, if i ∈ Pk, then π probes user i when Pk 6= ∅;
otherwise transmitter remains idle.

Let bS denote the set of all deterministic joint probing and

transmission strategies. Note that each π ∈ bS is defined
recursively using functions gπ

k (·). In a given slot t, the ini-

tial state is (∅, c∅), and P0 = ∅. If gπ
0 (∅, c∅) = i1, π probes

i1, and the state becomes (P1, c
P1) with P1 = {i1}. The

process continues until for some k, gπ
k (Pk, cPk) ∈ Pk. Note

that there are at most O(M × N !) deterministic strategies.
Moreover, any policy in S can be obtained as a convex com-

bination of policies in bS.

Definition 3. A scheduling policy ∆ is an algorithm that

selects a strategy π ∈ bS in every slot t.

Denote by π∆(t) the joint probing and transmission strat-
egy chosen by ∆ in slot t. In general, we use the term “pol-
icy” for a scheduling policy and the term “strategy” for the

a joint probing and transmission strategy. Also, to simplify
the notation, we will drop t whenever the time slot of interest
can be identified unambiguously.

Let Bπ(t) = [Bπ
1 (t) · · · Bπ

N (t)] denote the vector indi-
cating the number of bits served under strategy π in slot t.
Since at most one receiver is served in each slot, at most
one component of Bπ(t) is greater than zero. The strategy
π, however, may transmit to different receivers in different
slots depending on the channel states observed. Now, we
define the throughput of a scheduling policy.

Definition 4. Throughput of a scheduling policy ∆ is

T
∆ def

= lim inf
t→∞

1

t

tX

s=1

B
π∆

(s).

Let Q∆(t) denote the queue length vector under policy ∆
in slot t. The queue length dynamics is then given by

Q
∆(t + 1) = max{Q∆(t) + A(t) − B

π∆

(t),0}, (1)

where the maximum is component-wise.

Definition 5. We say that the system is stable if the
mean queue length for all the receivers is finite. A scheduling
policy that stabilizes the system is a stable scheduling policy.

Definition 6. A policy is said to be throughput optimal if
it can stabilize the system whenever there exists a scheduling
policy that can stabilize the system.

In the following section, we characterize the stability re-
gion of the system defined by the set of arrival rates a =
(a1, . . . , aN) such that there exists a policy stabilizing the
system. We also present a queue length-based throughput
optimal scheduling policy.

3. THROUGHPUTOPTIMALSCHEDULING
First, we characterize the stability region. Let us define

T π = E[Bπ(t)], where the expectation is with respect to
the channel state distribution. Note that T π denotes the
throughput of a scheduling policy ∆ that chooses π∆(t) = π

in every slot t. Let Λ = co({T π : π ∈ bS}), where co(A)
denotes the convex hull of the set A. Also, let Λ◦ denote
the set of all µ ∈ Λ such that there exists ν ∈ Λ satisfying
ν > µ, where the inequality is component-wise. Now, the
stability region is characterized by:

Theorem 1. If a ∈ Λ◦, then there exists ∆ such that
the system is stable under ∆. Moreover, if a 6∈ Λ, then no
scheduling policy can stabilize the system.

To prove the above theorem, we use the following random-
ized policy ∆R(δ), where δ > 0 is a parameter that will be
chosen appropriately depending on a. In each slot, ∆R(δ)

chooses a strategy π ∈ bS w.p. pπ independent of the choices
in the previous slots. The distribution p is a feasible solution
of the following equation:

X

π∈ bS

pπE[Bπ(t)] = a + δ, (2)

where δ is N-dimensional vector with all components equal
to δ. ∆R(δ) is well defined only if (2) admits a solution.
It might happen that in a given slot, say t, the service
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Bπ∆R(δ)

i (t) obtained by some user i under π∆R(δ) exceeds

the buffer content Q
∆R(δ)
i (t), in which case we assume that

buffer i just empties in slot t. Let rmax = R(cmax). When-

ever Qi(t) ≥ rmax, Bπ∆R(δ)

i (t) bits depart from queue i un-
der ∆R(δ) in slot t.

Lemma 1. If a ∈ Λ◦, then there exists δa > 0 such that
∆R(δ) is well defined for every δ ∈ (0, δa). Moreover, for
every δ ∈ (0, δa), ∆R(δ) is stable.

Proof. When a ∈ Λ◦, there exists bδ > 0 such that for

every δ > bδ, a+δ 6∈ Λ; while for every δ ∈ (0, bδ), a+δ ∈ Λ◦.
The above statement follows directly from the definition of

Λ◦. Choose bδ = δa , and fix δ ∈ (0, δa). Now, since a + δ ∈
Λ◦, i.e., a + δ is in the convex hull of {E[Bπ(t)]}π∈ bS , then
clearly (2) admits a solution.

Now, we show that ∆R(δ) is stable by proving that

{Q∆R(δ)(t)}t≥1 is a positive recurrent Markov chain. We
use Foster’s theorem [10] to establish the positive recurrence.
Define Lyapunov function l(Q) = Q · Q, and consider the

drift D∆R(δ)(Q) of l(·) under ∆R(δ) in state Q.

D∆R(δ)(Q)

= E

h
l
“
Q

∆R(δ)(t + 1)
”
− l

“
Q

∆R(δ)(t)
”
|Q∆R(δ)(t) = Q

i

≤ N [amax]
2 + N [rmax]

2 + 2Q · a − 2E[Q · Bπ∆R(δ)

(t)|Q].

Let M = {i : Qi(t) ≥ rmax}. Note that M is a set of re-
ceivers for which the number of bits that depart are exactly

equal to Bπ∆R(δ)

i (t). Moreover, for every i ∈ M, Bπ∆R(δ)

i (t)
is independent of the queue length. Thus, we have the fol-
lowing.

D∆R(δ)(Q)

≤ N [amax]
2 + N [rmax]

2 + 2rmax

X

i∈M

ai

+2
X

i∈M

Qiai − 2
X

i∈M

QiE[Bπ∆R(δ)

i (t)]

≤ N [amax]
2 + N [rmax]

2 + 2rmax

X

i∈M

ai − 2δ
X

i∈M

Qi

≤ N(amax + rmax)
2 − 2δ

X

i∈M

Qi.

Thus, D∆R(δ)(Q) < 0 for every Q such that there exists i

such that Qi > N(amax+rmax)2

2δ
. This shows that the Lya-

punov drift is negative in all except finite number of states.
Thus, ∆R(δ) stabilizes a.

Now, we are ready to prove Theorem 1.

Proof Proof of Theorem 1. In view of Lemma 1, it
suffices to show that when a 6∈ Λ, then no scheduling policy
can stabilize the system. We prove this using contradiction.
Fix a 6∈ Λ, and let there exist a scheduling policy ∆ that
can stabilize the system. Let ζ∆

π (t) denote the number of
slots until t in which ∆ has chosen π. We assume that

limt→∞
ζ∆

π (t)

t
exists w.p. 1. However, we do not assume

that the limit is same on all the sample paths. Fix a sample

path and let p̃∆
π = limt→∞

ζ∆
π (t)

t
. Note that {p̃∆

π : π ∈ bS}
is a distribution on bS. Moreover, since ∆ is stable, the
departure rate from each queue is equal to the arrival rate
in the queue. Thus, a ∈ Λ, a contradiction.

Now, we design an adaptive queue length-based schedul-
ing policy ∆⋆ as follows. The policy ∆⋆ that we propose
chooses π∆⋆

(t) such that

π∆⋆

(t) ∈ arg max
π∈ bS

{Q(t) · E[Bπ(t)]}.

In the following theorem, we show that ∆⋆ is throughput
optimal. First, we note that in every t, for every ∆

E[Q(t) · Bπ∆⋆

(t)|Q(t)] ≥ E[Q(t) · Bπ∆

(t)|Q(t)].

The above inequality is satisfied for all values of Q(t).

Theorem 2. If a ∈ Λ◦, then ∆⋆ stabilizes a. Thus, ∆⋆

is a throughput optimal scheduling policy.

Proof. We show that the Markov chain {Q∆⋆

(t)}t≥1 is
positive recurrent, and as in the proof of Theorem 1, we use
Foster’s theorem to establish stability. Again we use the
Lyapunov function l(·): l(Q) = Q · Q. The Lyapunov drift
under policy ∆⋆ becomes

E[l(Q(t + 1)) − l(Q(t))|Q(t)]

≤ N [amax]
2 + N [rmax]

2

+2Q(t) · a − 2E[Q(t) · Bπ∆⋆

(t)|Q(t)]

≤ N [amax]
2 + N [rmax]

2

+2Q(t) · a − 2E[Q(t) · Bπ∆R(δ)

(t)|Q(t)].

Note that the last expression above provides an upper bound
on the drift under policy π∆R(δ). Now, using the same ar-
guments as that in the proof of Lemma 1, it can be shown
that the drift is negative outside the compact set {Q : Q ≤
N(rmax + amax)

2/2δ element-wise}.

Though Theorem 2 provides a throughput optimal policy,
it does not specify how π∆⋆

should be computed in each
slot. We address this in the next section.

4. OPTIMAL JOINT-PROBING AND

TRANSMISSION STRATEGY π∆⋆

The problem of maximizing Q(t)·E[Bπ(t)] given the queue
lengths Q(t) over all joint probing and transmission strate-
gies π can be addressed using Markov Decision Process (MDP)
formulation. Indeed, the problem is a generalization of opti-
mal stopping time problem as can be seen from Definition 1.
We say that the problem is a generalization because in this
case, in addition to determining when to stop, the strategy
has to determine which user probe next; while in the classi-
cal optimal stopping time problem, the probing sequence is
given a priori. Next, we formally formulate the problem of
determining π∆⋆

.

4.1 Generalized Stopping Time Problem
Consider any slot t. Let Q(t) = [Q1(t) · · · QN(t)] de-

note the queue lengths in slot t. For conciseness, we omit
t. Let π be a joint probing and transmission strategy, and
assume that in state (Pk, cPk) it decides to transmit. To
maximize Q · E[Bπ ], then π should transmit to user i =
arg maxj∈Pk

QjR(cj). Thus, to define an optimal strategy,
it suffices to record the modified state (Pk, w), where Pk is
the set of k probed users, and w = maxj∈Pk

QjR(cj) is the
maximum weighted rate in the set of users in Pk. We refer
to Q · E[Bπ] as the expected weighted throughput.

78



Consider the state (Pk, w), and define Ttr(Pk, w) as the
weighted throughput if the joint probing and transmission
strategy decides to transmit in the state (Pk, w). Thus,
Ttr(Pk, w) = (1 − kβ)w. Furthermore, let T ⋆(Pk, w) denote
the maximum expected value of the weighted throughput
that can be achieved from state (Pk, w) under any strategy.
Then, T ⋆(Pk, w) can be recursively computed as follows:

T ⋆(Pk, w)

= max


Ttr(Pk, w), max

j∈Pk

E[T ⋆(Pk ∪ {j}, w ∨ Wj)]

ff
, (3)

where Wj
def
=QjR(Cj), and (a ∨ b) = max{a, b}. Note that

the first term in the right hand side of (3) corresponds to
the weighted throughput given that the decision is to trans-
mit, while the second term corresponds to the maximum ex-
pected weighted throughput obtained by a system given that
it probes some user j ∈ Pk. After probing j, the state be-
comes (Pk+1, w∨Wj), where Pk+1 = Pk ∪{j}. In each slot,
the system starts from the state (∅, 0), and hence the maxi-
mum expected value of the weighted throughput is T ⋆(∅, 0).
Let us denote the distribution of Wi by Fi(·). Note that
given Q, Fi(·) can be easily obtained from the distribution

F̃i(·) of Ci.
At this point, it is worth mentioning that T ⋆(∅, 0) can

be obtained using dynamic programming. But the compu-
tational complexity of this procedure is of the order of the
cardinality of the state space. Note that the cardinality of
the state space in our case is at least N ! × M . Thus, it is
easy to see that when the number of users N is large or/and
the number of channel state values M is large, then using
dynamic programming is computationally infeasible. In the
following subsection, our aim is to find structural properties
of π∆⋆

so as to reduce the computational complexity.

4.2 Structural Properties of π∆⋆

Before obtaining some key structural properties, let us
define some important terms. Let Ttr,pr(i)(Pk, w) for i ∈ Pk

and Ttr,pr(Pk, w) be defined as follows.

Ttr,pr(i)(Pk, w)
def
= (1 − (k + 1)β)E[w ∨ Wi],

Ttr,pr(Pk, w)
def
= max

i∈Pk

˘
Ttr,pr(i)(Pk, w)

¯
.

We note that Ttr,pr(i)(Pk, w) denotes the expected weighted
throughput of the system, if in state (Pk, w), the probing and
transmission strategy probes user i ∈ Pk and then transmits
to the user that provides the largest weighted throughput.
Thus, Ttr,pr(Pk, w) denotes the maximum expected weighted
throughput given that from state (Pk, w) exactly one addi-
tional user is probed. We refer to Ttr,pr(Pk, w) as a one-
step-look-ahead throughput from state (Pk, w).

Next, fix the set Pk and let us define Dk as follows:

Dk
def
= {w : Ttr(Pk, w) ≥ Ttr,pr(Pk, w)}. (4)

Using this notation, we prove the following key result.

Theorem 3. In state (Pk, w), if w ∈ Dk, then the op-
timal decision is to transmit to the user i ∈ Pk such that
QiR(ci) = w, otherwise the optimal decision is to probe a
user in Pk.

Proof. We fix any arbitrary PN−1 ⊃ Pk, and let us as-
sume that the users in PN−1 are probed. Then, the resulting

system state is (PN−1, wN−1). Note that wN−1 ≥ w, there-
fore wN−1 ≥ wmax(Pk), or by Lemma 3, wN−1 ∈ Dk and by
Lemma 4, wN−1 ∈ DN−1. Lemmas 3-4 and the definition of
wmax(Pk) are provided in Appendix. Thus,

Ttr(PN−1, wN−1)

≥ Tpr,tr(Pk, wN−1)

= max
i∈PN−1

{E[Ttr(PN−1 ∪ {i}, wN−1 ∨ Wi)]}

= max
i∈PN−1

{E[T ⋆(PN−1 ∪ {i}, wN−1 ∨ Wi)]}.

The last relation follows because after probing the last user,
transmit is the only optimal decision. Hence if N − 1 > k,
we have

T ⋆(PN−1, wN−1) = Ttr(PN−1, wN−1). (5)

We next consider state (PN−2, wN−2) and prove the result
similarly. In fact we show by induction down to k + 1,
that T ⋆(Pk+1, uk+1) = Ttr(Pk+1, wk+1) which completes
the proof.

Theorem 3 shows that the decision of transmitting in the
current state or to probe a new user can be obtained by
considering the one-step-look-ahead weighted throughput.
However, if the optimal decision is to probe a user in Pk,
then the above theorem does not elaborate on which user
to probe. Indeed, the intuitive choice of probing a user that
maximizes the one-step-look-ahead weighted throughput is
not optimal. We demonstrate this using an example.

Example 1. Assume that slots are of unit duration. Let
us consider two receivers U1 and U2, and let their respective
queue lengths be Q1 and Q2. In each slot, let the maximum
rate to U1 be 2 w.p. (k − 1)/k and k w.p. 1/k, and for
receiver U2 let it be 1 w.p. (2k − 1)/2k and 2k w.p. 1/2k.
Hence the one-step-look-ahead weighted throughputs for U1

and U2 at the initial state (∅, 0) are respectively

Ttr,pr(U1)(∅, 0) =
Q1(3k − 2)

k
, and

Ttr,pr(U2)(∅, 0) =
Q2(4k − 1)

2k
.

Let us fix k > 3 and Q1 = 2Q2 = 2Q. In this case,
Ttr,pr(U1)(∅, 0) > Ttr,pr(U2)(∅, 0). Hence intuitively one would
expect to probe U1. However, we show that for

β < min


k2 − 3k + 2

7k2 − 10k + 4
,
2k2 − 3k + 1

5k2 − 6k + 2

ff
, (6)

probing U2 first would provide a higher expected weighted
throughput. We can show that the optimal policy π⋆ is to
probe U2 first in every slot, and if the achievable rate is 2k,
then transmit to U2; otherwise probe U1 and transmit to it
at appropriate rate. The expected weighted throughput of π⋆

is Tπ⋆ = Q(1 − β) + 2Q(1 − 2β) 6k2−7k+2
2k2 . To show that

this policy is optimal we need to compare it with π1 that
probes U1 and transmits at appropriate rate, and with π2

which probes U1 first. If the achievable rate is k, then π2

transmits to U1 otherwise it probes U2 and transmits to it
if the achievable rate is 2k, else it transmits to U1 at rate
2. The expected weighted throughput of π1 is Tπ1 = 2Q(1 −

β)( 2(k−1)
k

+ 1) while that of π2 is Tπ2 = 2Q(1− β) + Q(1−
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2β) 3k2−4k+1
k2 . Tπ1 < Tπ⋆ if β < k2−3k+2

7k2−10k+4
while Tπ2 < Tπ⋆

if β < 2k2−3k+1
5k2−6k+2

. Hence if (6) holds, then π⋆ is optimal.

In the following theorem, we provide guidelines to de-
termine which user to probe in a special case. First, let
us denote Wi ≤st Wj whenever the random variable Wi

is stochastically smaller than the random variable Wj , i.e.,
E[f(Wi)] ≤ E[f(Wj)] for every increasing function f(·).

Theorem 4. If there exists a user i ∈ Pk such that Wj ≤st

Wi for every j ∈ Pk, then in state (Pk, w) such that w 6∈ Dk,
the optimal decision is to probe user i.

Proof. We prove the theorem by induction on the num-
ber of unprobed users. When this number is 1, the re-
sult holds since we can only probe this user. Now assume
that the result holds when the number of unprobed users is
strictly less than N −k. Denote (Pk, w) as the system state.
Since Tpr,tr(Pk, w) ≥ Ttr(Pk, w), w ≤ wmax(Pk). Define
for all i, j αi = wmax(Pk ∪ {i}), αj = wmax(Pk ∪ {j}) and
α = wmax(Pk ∪ {i} ∪ {j}). Note the αi ≥ αj and let i ∈ Pk

with i 6= j. If w ≥ αi, then after probing i or j we should
transmit. It is then optimal to probe j. Hence we will as-
sume w ≤ αi

We compare the expected throughput obtained starting from
the state (Pk, w), (a) when first probing user i and the user
j, (b) when first probing user j and then user i.

• In scenario (a), probing i (with weight wi) results in
channel state xi. By induction we know the next user
to probe is j. Then if Wi = QiR(xi) ≥ αi, we should
not probe j and transmit. If QiR(xi) < αi, we should
probe j. If w ∨ Wi ∨ Wj ≥ α, we should transmit
otherwise we should probe further.

• In scenario (b), we first probe j. If Wj ≥ αj , we
should transmit. Otherwise we probe i. Then if w ∨
Wj ∨Wi ≥ α, we should transmit otherwise we should
probe further.

We need to compare expected throughput in scenarios (a)
and (b) in cases where we transmit after probing i and/or j.
We will hence consider cases when w ≤ αi. This is simply
due to the fact that if we have to probe further i and j, the
system (a) and (b) are identical. We denote by T (a)(w) and

T (b)(w) the expected throughputs in scenarios (a) and (b)
when we do not probe more users than i and j. Also wi and
wj are weights are associated with user i and j and Fi and
Fj are pdf’s associated with Wi and Wj :

T (a)(w) = ak+1

R αi

∞
dFi(wi)wi + ak+2

R αi

0
dFi(wi)

×
R ∞

0
dFj(wj)1w∨wi∨wj≥α max{w, wi, wj}

T (b)(w) = ak+1

R αj

∞
dFj(wj)wj + ak+2

R αj

0
dFj(wj)

×
R ∞

0
dFi(wi)1w∨wi∨wj≥α max{w, wi, wj}

where ak = (1 − kβ). We want to prove G(w) = T (b)(w) −

T (a)(w) ≥ 0, which follows from Lemmas 5 and 6 in Ap-
pendix.

Though Theorem 4 provides useful guidelines for decid-
ing which user to probe, we note that in general the ran-
dom variables Wj and Wi may not be stochastically ordered
even when R(Ci) ≤st R(Cj) for certain values of Qi and
Qj . Moreover, since the weight Qi corresponds to the queue

length of user i, we can not assume any specific structure
on the values of Qi’s. Thus, the complete characterization
of the optimal policy through Theorems 3 and 4 is available
only in limited cases. We note that the problem of deter-
mining which user to probe is difficult in general (see [11])
even when all the weights are equal; the solutions are known
only in special cases [8]. In the following section, we consider
certain special cases that are relevant in practice, and obtain
scheduling policies with provable stability guarantees.

5. PROPORTIONAL FADING
We consider the special case of proportional fading where

for every i, Ci = xiYi, where xi is a constant and Yi is
a random variable with distribution F (·) independent of i.
The Yi’s are assumed to be independent across users. This
choice of modelling is relevant in practical scenarios, where
the channel state distribution of each user is of the same
form, but the means are different. In wireless scenario, such
cases will appear when the fast fading is i.i.d. but the slow
fading for each user is different on account of the different
distances between the transmitters and their respective re-
ceivers. Such models are widely used in the literature, see
e.g. [6]. We also assume that R(c) = log(1 + c/N0), where
N0 is the power spectral density of noise.

With these additional assumptions, we can completely
characterize the optimal probing sequence using Theorem 4
in certain special cases that are described in Corollaries 1
and 2.

Corollary 1. If xi = xj for all i and j, i.e. the users
are i.i.d., then the optimal strategy is defined recursively,
starting from state (∅, 0) as follows: In any state (Pk, w),
if w ∈ Dk, then transmit to the user that maximizes the
weighted throughput in the set Pk; otherwise probe user

i = arg max
j∈Pk

{Qj}.

Proof. Let xi = x for every i. Now, note that

Qi log

„
1 +

xY

N0

«
≤st Qj log

„
1 +

xY

N0

«
,

whenever Qi ≤ Qj . Thus, the result follows from Theo-
rems 3 and 4.

Corollary 2. Suppose that, for every i, the rates R(Ci)
can be approximated by ρiRi, where ρi is a constant and Ri

is a random variable whose distribution does not depend on
i. Then, the optimal strategy is defined recursively, starting
from state (∅, 0) as follows: In any state (Pk, w), if w ∈
Dk, then transmit to the user that maximizes the weighted
throughput in the set Pk; otherwise probe user

i = arg max
j∈Pk

{Qj × ρj}.

Proof. Note that the weighted throughput of any user i
is Wi = QiρiR

N0
. Thus, clearly, Wi ≤st Wj whenever Qiρi ≤

Qjρj . Thus, the result follows from Theorem 4.

Note that the condition in Corollary 2 is satisfied for the
low SNR case because R(Ci) ≈ xi

N0
Y for low SNR. Now,

choose ρi = xi/N0 and R = Y .
Even in this simplified channel model, apart from the spe-

cial cases discussed in Corollaries 1 and 2, it is difficult to
determine the optimal probing sequence. In the following
subsection, we obtain a scheduling policy that achieves a
guaranteed fraction of the stability region.
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5.1 Approximate Probing and Transmission
Strategy

Fix slot t and the queue lengths in this slot. Let [a, b]
denote the support for the r.v. Yi’s, and let xmin = mini xi

and xmax = maxi xi. Also, define

γ =
log

“
xmax
xmin

”

log
“

xmina

N0

” + 1.

We assume that axmin
N0

≫ 1, i.e., we consider the high SNR

regime. Hence, for every i, R(xic) ≈ log
“

xic

N0

”
for every c ∈

[a, b]. In these settings, we define a probing and transmission
strategy πA as follows:
Initial step: (system state = (∅, 0))

1. Find set A = arg maxi=1,...,N QiR(xia). Now, probe
user jπA

1 = min{arg maxi∈A xi}. Let the weighted rate
for the probed user be w1, i.e., w1 = Q

j
πA
1

R(c
j

πA
1

).

2. If γw1 ∈ D1, where D1 is defined with respect to set
P1 = {jπA

1 }, then transmit to the user; otherwise up-
date the state to (P1, γw1) and continue as described
below.

Subsequent steps: (system state = (Pk−1, γw))

1. Find set A = arg maxi∈Pk−1
QiR(xia). Now, probe

user jπA
k = min{arg maxi∈A xi}. Let the weighted

throughput for the probed user be wk.

2. If γ(w ∨ wk) ∈ Dk, where Dk is defined with respect
to set Pk = Pk−1 ∪ {jπA

1 }, then transmit to the user
that provides the maximum weighted throughput; oth-
erwise update the state to (Pk, γ(w∨wk)) and go to 1).

We note that under πA, the sequence in which the users
are probed is deterministic given the queue lengths. That is
for a given Q, the probing sequence under πA can be com-
pletely determined independently of the observed channel
states of the probed users. Only the decision to transmit
now or probe further is determined by the channel state ob-
servations.

Let T πA(Pk, γw) be the expected weighted throughput
obtained under policy πA from state (Pk, γw). Note that
if πA decides to transmit in the state, then T πA(Pk, γw) =
(1 − kβ)w; otherwise T πA(Pk, γw) = E[T πA (Pk+1, γ(w ∨
W

j
πA
k+1

))], where Pk+1 = Pk ∪ {jπA
k+1}. Thus,

E[T πA(Pk+1, γ(w ∨ Wj
πA
k+1

))

= (1 − (k + 1)β)

Z

γ(w∨v)∈Dk+1

(u ∨ v)dF
j

πA
k+1

(v)

+

Z

γ(w∨v) 6∈Dk+1

E[T πA(Pk+2, γ(w ∨ v ∨ W
j

πA
k+2

))]dF
j

πA
k+1

(v).

With this notation, our key result is the following.

Theorem 5. For any queue length values {Qi}i=1,...,N ,

1

γ
T ⋆(∅, 0) ≤ T πA(∅, 0).

To prove Theorem 5, we use the following lemma.

Lemma 2. Fix any system state (Pk, w). Then, Wi ≤st

γWj
πA
k

for every i ∈ P.

Proof. For brevity, let jπA

k = j. Now, to establish Wi ≤st

γWj , it suffices to show that for every u ∈ [a, b], QiR(xiu) ≤
γQjR(xju). We prove the afore-mentioned by considering
the various possible cases. Consider any i ∈ Pk. First, let us
consider the case when xi ≥ xj . Here, Qi ≤ Qj . Otherwise,
πA will choose i instead of j. Now, let us define the function
gij(u) as follows: gij(u) = QjR(xju)−QiR(xiu). Moreover,

∂gij(u)

∂u
=

Qj − Qi

u
.

Now, since Qj ≥ Qi, gij(·) is an increasing function. Fur-
thermore, by the choice of j, gij(a) ≥ 0. Thus, gij(u) ≥ 0
for every u ∈ [a, b]. Since γ > 1, the required result follows.

Now, let us consider the case xi ≤ xj . If Qi ≤ Qj , then
clearly gij(u) ≥ 0 for every u ∈ [a, b]. So, we consider wi ≥
wj . Let m = Qi/Qj . It suffices to show that γ ≥ m.
First, note that gij(u) is a monotone decreasing function
with gij(a) ≥ 0. Moreover, if gij(b) ≥ 0, then the required
follows immediately. Hence, we need to consider gij(b) < 0.
Since gij(·) is a continuous decreasing function on a compact
set [a, b] with boundary conditions gij(a) ≥ 0 and gij(b) < 0,
there exists u′ ∈ [a, b] such that gij(u

′) = 0. Thus,

Qi log

„
xiu

′

N0

«
= Qj log

„
xju

′

N0

«

⇒ m =
log

“
xj

xi

”

log
“

xiu′

N0

” + 1 ⇒ m ≤
log

“
xmax
xmin

”

log
“

xmina

N0

” + 1.

Thus, m ≤ γ. This concludes the proof.

Now, we prove Theorem 5.

Proof of Theorem 5. First, using induction k, we show
that for every (Pk, γw), T ⋆(Pk, γw) ≤ γT πA(Pk, γw). Con-
sider any state (PN , γw). Since there are no more receivers
to probe, the optimal decision is to transmit. Now, note that
T ⋆(PN , γw) = γ(1−Nβ)w. Also, note that T πA(PN , γw) =
(1 − Nβ)w. Thus, the result holds for k = N . Now, by in-
duction hypothesis, we assume that the claim is true for
every u ≥ k + 1.

Now, consider state (Pk, γw). As before, if γw ∈ Dk, then
T ⋆(Pk, γw) = (1 − kβ)γw. Under πA also, the decision is
to transmit if γw ∈ Dk. Hence, T πA(Pk, γw) = (1 − kβ)w.
Thus, the result follows whenever γw ∈ Dk. Now, consider
γw 6∈ Dk. Then,

T ⋆(Pk, γw)

= max
i6∈Pk

E[T ⋆(Pk ∪ {i}, γ(w ∨ Wi))]

≤ max

8
>><
>>:

max
i∈Pk

i6=j
πA
k+1

E[T ⋆(Pk ∪ {i}, γ(w ∨ Wi))],

E[T ⋆(Pk ∪ {jπA

k+1}, γ(w ∨ W
j

πA
k+1

)]
o

= E[T ⋆(Pk ∪ {jπA

k+1}, γ(w ∨ W
j

πA
k+1

)]. (7)

The last relation follows from Lemma 2 and Theorem 4.
Note that Lemma 2 shows that for every i, Wi ≤st γW

j
πA
k+1

.

Now, (7) follows using Theorem 4. Next, note that

T πA(Pk, γw) = E[T πA(Pk ∪ {jπA

k+1}, γ(w ∨ W
j

πA
k+1

)]. (8)
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Now, the required result follows using (7), (8) and the in-
duction hypothesis. Since, we have shown that T ⋆(Pk, γw) ≤
γT πA(Pk, γw) for every Pk and w. Thus, the result holds
for (∅, 0). This concludes the proof.

5.2 Approximate Scheduling Policy
Here, we define a scheduling policy using the approximate

probing and transmission strategy developed in the last sub-
section. Let us define a scheduling policy ∆A as follows:
π∆A(t) = πA(t) in every slot t. The policy ∆A is called
approximate as it satisfies for every queue length vector Q

E[Q(t)·Bπ∆⋆

(t)|Q(t) = Q] ≤ γE[Q(t)·Bπ∆A
(t)|Q(t) = Q].

Thus, ∆A approximates ∆⋆ to the fraction 1/γ. Now, using
similar arguments to those used in the proof of Theorem 2,
the following theorem can be shown.

Theorem 6. The policy ∆A stabilizes every a ∈ 1
γ
Λ◦.

The above result shows that the policy ∆A achieves 1/γ
fraction of the system’s stability region. Note that γ depends
on xmin, xmax and R(xmina). In high SNR regime, R(xmina)
is large. In this scenario, given that xmax/xmin is not too
large, γ ≈ 1. Then, by Theorem 6, ∆A is stable for most of
the stabilizable arrival rate vectors.

6. NUMERICAL EXPERIMENTS
In this section, we provide numerical experiments to illus-

trate the theoretical findings of the previous sections. Our
objectives are here (i) to show the probing cost in terms of
throughput (stability region) one has to pay when the CSIs
have to be acquired, and (ii) to assess the performance of the
approximate probing and transmission strategy proposed in
Section 5. We consider systems with proportional fading
as considered in Section 5: first we investigate the case of
homogeneous fading and then that of heterogeneous fading.

6.1 Homogeneous Rayleigh fading
For this scenario, we assume that the channel condition

of user i during slot t is Ci(t) and that Ci(t) are i.i.d.
across users and slots. We consider Rayleigh fading, i.e.,
Ci(t) is exponentially distributed (actually we consider a
discretized version of the exponential distribution with 600
possible values). We further consider the case where the
service rate of a user with channel condition c is given by
R(c) = log(1 + c/N0). The transmitted power is 40 dBm
and the noise power is -100dBm. With such a system, an
optimal probing strategy is to probe user channels in the
decreasing order of their queue lengths as shown in Corol-
lary 1. When no probing is required, i.e., when the CSIs
are known in advance, a throughput optimal policyy is to
transmit at each time t to the user with the highest product
R(Ci(t)) × Qi(t).

Assume that the expected arrival rate at the various buffers
are identical and equal to a. we investigate the maximum
total arrival rate N × a such that there exists a scheduling
policy stabilizing the network. With perfect knowledge of
the channel states, an alternative throughput optimal pol-
icy is obtained when, each slot t, one transmits to the user
with the best channel. Indeed, since all users are equivalent,
when one approaches the stability limit (i.e. a is close to
the maximum arrival rate compatible with stability), then

all queues tend to saturate simultaneously. Hence all users
have packets in their buffer. As a result, the optimal schedul-
ing decision is to maximize the system service rate and hence
to transmit to user with the best channel. Under this policy,
the stability condition can be written as:

N × a < E[ max
i=1,...,N

R(Ci(t))].

Note that E[maxi=1,...,N R(Ci(t))] scales as log log(N) when
N grows large. This contrasts with the case where the chan-
nel states have to be acquired, since in this case with a fixed
probing time β, the total throughput of the system remains
bounded as N grows large. In fact, one can easily observed
that when N is large enough, the optimal probing and trans-
mission strategy remains the same as N varies. In Figure
1, we present the maximum total throughput with or with-
out the knowledge of channel states. In the latter case, we
consider different values of β, 0.01, 0.05, 0.1, and 0.2. Fig-
ure 2 presents the optimal probing policy when N is large
enough (greater than ⌊β/N⌋). More specifically, it provides
the thresholds (in terms of rate) below which it is optimal
to probe the channel of another channel as a function of the
number of users already probed. when the threshold reaches
0, it is always optimal to transmit.
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Figure 1: Maximum system throughput compatible
with stability in the case of homogeneous Rayleigh
fading. Results are in bit/s/Hz.
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Figure 2: Successive thresholds of the optimal prob-
ing and transmission strategy.

Observe in Figure 1 that the price of acquiring the chan-
nel states is not negligible in general, unless the number of
queues is limited and the time to probe a channel remains

82



small. In Figure 2, note that as β decreases, the optimal
policy consists in probing more and more user channels.

6.2 Heterogeneous fading
We now consider heterogeneous fading, and to simplify

the exhaustive search of optimal probing and transmission
strategy, we consider 2 users / queues only, each with 3
possible channel states. In Figure 3, we plot the Pareto-
boundary of the stability region for different strategies: (1)
a throughput-optimal strategy when the channel states are
perfectly known, (2) a throughput-optimal policy when they
have to be acquired (we use different values of β), and (3)
the approximate policy (for the case β = 0.1).
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Figure 3: Stability region for a 2-user system with
heterogeneous fading.

Note that the throughput region are all convex and that
their Pareto-boundary is strictly concave. This strict con-
cavity is due to the fact that the policies considered are really
able to take advantage of multi-user diversity. Observe also
that the approximate policy proves to be almost through-
put optimal, even if in this case we are not in an high SNR
regime. We know that in general the latter policy cannot
be throughput optimal, however we believe that it performs
quite well in most system scenarios.

7. CONCLUSION
We explored the problem of designing throughput opti-

mal policies in wireless systems with limited information.
As a first step, we showed that the policies, analogous to
the adaptive queue length-based policies that are known to
be throughput optimal when the CSIs are completely known,
are also throughput optimal when the CSIs have to be ac-
quired. But, to completely characterize these queue length-
based policies when only a limited channel state information
is available, we need to design joint probing and transmis-
sion strategies that maximize the weighted throughput of
the system. We showed that this problem is a generalized
version of the optimal stopping time problem, and that the
solutions are, in general, difficult to obtain. Hence, we first
derived certain structural properties of the optimal solution
to reduce the computational complexity of designing these
optimal strategies. Using these structural properties, we
completely characterized optimal strategies in certain prac-
tically relevant cases. Moreover, when a complete charac-
terization was not possible, we proposed an approximate
scheduling policy that achieves a guaranteed fraction of the
stability region. Our results are relevant to practical sys-

tems like broadcast with limited information (e.g. downlink
of wireless LANs or cellular systems) and cognitive radio
systems.
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APPENDIX

Supporting Lemmas for Theorem 3:

Lemma 3. There exists wmax(Pk) such that Dk = {w :
w ≥ wmax(Pk)}.

Proof. Consider a user with w ∈ Dk. It suffices to prove
that for all w′ > w, w′ ∈ Dk. Since w ∈ Dk,

(1 − kβ)w ≥ (1 − (k + 1)β) max
i∈Pk

{E[w ∨ Wi]}

(1 − kβ) max
i∈Pk

{Ei[w − (w ∨ Wi)]} ≥ −β max
i∈Pk

{Ei[(w
′ ∨ Wi)]}

as max{w′, Wi} ≥ max{w, Wi}. It can be seen that w′ −
(w′ ∨ Wi) ≥ w − (w ∨ Wi). Hence we obtain,

(1−kβ) max
i∈Pk

{Ei[w
′−max{w, Wi}]} ≥ −β max

i∈Pk

{Ei[max{w′, Wi}]}

which implies w′ ∈ Dk.

Lemma 4. For any sequence of sets of probed users such
that Pk+1 = Pk∪{i} for some i ∈ Pk for k ∈ {0, . . . , N−1},
we have: for all k, Dk ⊆ Dk+1.

Proof. The proof is by contradiction. Assume that there
is some w, such that w ∈ Dk, but w /∈ Dk+1. Thus,

(1 − (k + 1)β)w < (1 − (k + 2)β) max
i∈Pk+1

{Ei[max{w, Wi}]}

Thus,

Ttr(Pk, u) − Tpr,tr(Pk, u) < β max
i∈Pk+1

Ei[(w − max{w, Wi})]

≤ 0,

which is a contradiction as assumed w ∈ Dk.

Supporting Lemmas for Theorem 4:

Lemma 5. For all w ≤ αj, we have G(w) = G(αj).

Proof. We note that if w ≤ α, then T (b)(w) and T (a)(w)
are independent of w and hence is G(w). Now let us assume

α ≤ w ≤ αj , The first terms in both T (b)(w) and T (a)(w) do
not depend upon w, while the second terms are respectively,

ak+2

Z αi

0

dFi(wi)

Z ∞

0

1wi∨wj≥α max{wi, wj}

−

Z Z

Γ(α,w)

dFi(wi)dFj(wj)(max{wi, wj} − w).

and

ak+2

Z αj

0

dFj(wj)

Z ∞

0

1wj∨wi≥W α max{wj , wi)}

−

Z Z

Γ(α,w)

dFi(wi)dFj(wj)(max{wi, wj} − w)

where Γ(α, w) = {(wi, wj) : α ≤ wi, wj ≤ w}. Hence differ-
ence G(w) is still independent of w.

Lemma 6. For all w such that αj ≤ w ≤ αi, G(w) ≥ 0.

Proof. We prove the result in discrete setting, proof for
continuous setting is similar. We employ the perturbation
approach.Without loss of generality, let N be the channel
state space. Denote by pi(l) the probability of the user i
to be in state l. We observe that when Fi = Fj result
holds. Now assuming that result is true for Fj and show that
stochastically increasing Fj does not change this conclusion.
We use F+

j defined by: for ǫ > 0, for a particular l0 ∈ N,

p+
j (l0) = pj(l0) − ǫ, p+

j (l0 + 1) = pj(l0 + 1) + ǫ and for all

l 6= l0, l0 +1, p+
j (l) = pj(l). It can be shown that using these

kind of perturbations we can start from Fi and modify it to
obtain Fj .

G+(w) ≥ G(w)+o(ǫ)+ǫ×1l0≥u(ak+1−ak+2Fi(αi∨l0)). (9)

From (9) we conclude G+(w) ≥ 0. From this for α ≤ w ≤
αj , we have G(w) = G(αj) ≥ 0.
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